Industrial Disc Brakes
Twiflex...
Leaders In Advanced
Braking Technology

Twiflex, with headquarters in Twickenham, England, specialises in the design, manufacture and supply of Advanced Braking Technology for industrial applications. With extensive in-house facilities, Twiflex enjoys a global reputation for quality.

Founded in 1946, Twiflex has produced more than half a million brake units, frequently for safety-critical duty, for applications around the world. From textile machines in the north of England to the world’s deepest mine shaft in South Africa, Twiflex brakes are specified by engineers and system designers in every type of industry.

From defining complete braking systems to identifying spare components, this catalogue provides useful guidance. An approximate brake selection may be made by assessing the data shown, however, it is always recommended to contact a Twiflex representative for a more detailed proposal.

Introduction/Selection Guide

<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 - 3</td>
<td>Applications</td>
</tr>
<tr>
<td>4 - 5</td>
<td>Overview</td>
</tr>
</tbody>
</table>

Brake Calipers

<table>
<thead>
<tr>
<th>Page</th>
<th>Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 - 7</td>
<td>MU Series</td>
</tr>
<tr>
<td>8 - 10</td>
<td>MS Series</td>
</tr>
<tr>
<td>11 - 14</td>
<td>MR Series</td>
</tr>
<tr>
<td>15 - 21</td>
<td>MX Series</td>
</tr>
<tr>
<td>22 - 26</td>
<td>GMX Series</td>
</tr>
<tr>
<td>27 - 29</td>
<td>GMR Series</td>
</tr>
<tr>
<td>30 - 37</td>
<td>Modular Series</td>
</tr>
<tr>
<td>38</td>
<td>Disc and Hub Assemblies</td>
</tr>
<tr>
<td>39</td>
<td>Monitoring Units</td>
</tr>
<tr>
<td>39</td>
<td>Materials, Traceability & Finishes</td>
</tr>
<tr>
<td>40</td>
<td>Hydraulic Power Units</td>
</tr>
<tr>
<td>41 - 44</td>
<td>Braking Calculations</td>
</tr>
<tr>
<td>45</td>
<td>Application Form</td>
</tr>
</tbody>
</table>
Select the right Twiflex Brake to meet your requirements

The charts below illustrate the range of standard TWIFLEX disc brakes. Model-specific publications and data sheets are available for each caliper shown. To determine which will suit your application compare the braking force required with that generated by the calipers*, noting that other factors (e.g. disc speed, pad material, service factor, etc) should be considered for optimal selection. Twiflex application engineers can provide assistance for your particular application.

Spring Applied Calipers\†

Direct Acting Calipers\†

*It should be noted that the braking forces shown are for a single caliper only and multiple calipers may often be used on a disc, with available space being the typical limitation.

\† KEY: (P) = Pneumatic, (H) = Hydraulic, (E) = Electrical, (M) = Mechanical
Twiflex disc brakes are found on industrial applications worldwide.

Metals
Twiflex brakes are used on critical applications throughout the metals processing industry for reliable dynamic, holding and emergency-stop duties. Typical applications include:
- Rolling and slitting
- Finishing and coating
- Cranes and haulage
- Shears and forging

Mining
For more than 40 years, Twiflex has been specified to provide safety-critical braking control in the mining industry. Typical applications include:
- Winders and hoists
- Conveyors
- Grinding mills
- Drag lines and shovels
- Reclaimers and haulage

Lifts and Escalators
Disc brake systems are typically used on industrial (freight) elevators and mass transit escalators. They provide safe, controlled braking in the event of power loss or emergency stop situations.
Twiflex calipers are used to provide speed control, static holding, and emergency braking on a variety of applications, including:

- Theme park rides
- Simulators
- Stage gear, props and scenery
- Monorails

Energy
Disc brake systems are used on and off-shore in the wind, wave, tidal, and oil and gas industries. Typical applications include:

- Wind and tidal turbine over-speed control
- Draw-works stopping and holding
- Wind turbine yaw motion control

Entertainment
Twiflex calipers are used to provide speed control, static holding, and emergency braking on a variety of applications, including:

- Theme park rides
- Simulators
- Stage gear, props and scenery
- Monorails

Marine and Shipping
Twiflex provides specialist solutions for the marine industry ranging from main propulsion shaft and thrusters braking to winch drive and weapon systems brakes.
Brake and System Overview

Brake Calipers
Twiflex offers the largest range of industrial disc brake calipers in the world. Spring applied units may be retracted pneumatically, hydraulically or electrically (depending on caliper design) while most direct acting brakes have some form of positive retraction device.

In general, pneumatically applied brakes are best suited for light to medium stopping duties and for tensioning applications where a high degree of control is required. Hydraulically applied brakes address higher torque requirements, while spring applied calipers are essential where braking must be maintained in the event of supply system failure.

Mechanically applied units are suitable for light tensioning duties or where no external power is available - they may also be specified when designers wish to use their own means of actuation.

Discs
Twiflex produces a large range of standard discs and associated mounting hubs. These can be supplied pilot bored or fully machined to suit the particular mounting or shaft arrangement.

Special discs for specific applications may also be supplied on request – contact Twiflex to discuss your requirements.

Couplings
Twiflex manufactures a range of torsionally flexible, rubber-element couplings for a range of duties. Sometimes combined with a brake disc, they are a critical interface between components of a transmission system. Twiflex engineers are available to discuss, analyse and advise on coupling suitability for any application, and provide the technical support needed.

Brake Pads
It is possible to make a realistic assessment of expected pad life based on analytical and test data. Pad life is determined by the area of the brake pad, the energy dissipated during braking and the peak braking path temperature, and must be a consideration whenever the duty includes dynamic braking.
Hydraulic Power Units
A number of electro-hydraulic power pack options are available, from standard ‘on/off’ control units to fully customised closed-loop braking systems. All require careful selection in order to ensure full compatibility with the type and number of brakes being controlled. Consultation with Twiflex engineers is recommended.

- The LC range provides a basic ‘on/off’ control for a range of Twiflex spring-applied and direct acting hydraulic calipers
- The MP range of modular power units offers flexibility of design and function
- Custom units are available on request

Monitoring Equipment
Every brake installation requires monitoring visually, mechanically, or electrically; particularly spring applied brakes on safety-critical applications. Twiflex can supply a range of electro-mechanical and electronic monitoring units and limit switches to indicate any combination of brake status or pad condition.

Materials, Finishes and Traceability
Twiflex is approved to BS EN ISO 9001:2000 and can offer material and dimensional certification by Lloyds Register and other regulatory authorities. All units are supplied with a standard Twiflex finish while special protective coatings to suit particular environments are available on request.
MU Series

MU Disc Brake Caliper Range

The Twiflex MU series of disc brake calipers is the smallest in the Twiflex range and is primarily intended for light stopping and holding duties. Its design permits left or right-handed assembly.

The caliper is suitable for use with a disc thickness of 8mm (.032 in), however, with a revised thruster mounting arrangement, may be used with discs 12.7mm (0.5 in) thick. Minimum disc diameter is 150mm (5.9 in). A range of brake discs is available from Twiflex (see Discs and Hub Assemblies).

Fixing bolt to be supplied by the customer.

For pneumatic operation use dry, filtered and non-lubricated compressed air. Pneumatic brakes require a control valve, operated either manually or by pneumatic or electrical signal.

The ratings shown on the graphs are based on fully bedded in and conditioned brake pads with a nominal friction coefficient $\mu = 0.4$. Twiflex disc brakes must be used with Twiflex asbestos free brake pads.

Effective disc radius = actual radius (m) – 0.02m
(Effective disc radius = actual radius [ft] – 0.07 ft)

MU3 Pneumatically Applied – Spring Released

Maximum Pressure 5 bar (73 psi)
Maximum Braking Force = 2.75kN@ 5 bar (618.22 lbf @ 73 psi)
Weight of caliper and thruster – 1.9kg (4.19 lb)
Weight of thruster only – 1.15kg (2.54 lb)
Volume displacement of thruster at 13mm stroke = 46ml (1.56 fl oz)

Maximum Pressure 7 bar (102 psi)
Maximum Braking Force = 0.72kN@ 7 bar (161.82 lb @ 102 psi)
Weight of caliper and thruster – 0.8kg (1.76 lb)
Weight of thruster only – 0.05kg (0.11 lb)
Volume displacement of thruster at 6mm stroke = 46ml (1.56 fl oz)

Measurements in millimeters, inches in parentheses.

MUP Pneumatically Applied – Spring Released

Measurements in millimeters, inches in parentheses.

Retraction pressures where shown are calculated and may vary depending on spring tolerance.
MUH Mechanically Applied – Hand Operated

Measurements in millimeters, inches in parentheses.

Retraction pressures where shown are calculated and may vary depending on spring tolerance.

Weight of caliper and thruster – 1.9kg (4.19 lb)
Weight of hand wheel assembly only – 1.19kg (2.64 lb)
Maximum Braking Force – 0.51kN (114.65 lbf)

MUS2 Spring Applied – Pneumatically Released

Measurements in millimeters, inches in parentheses.

Maximum Pressure = 7 bar (102 psi)
Minimum Pressure for full retraction = 4.3 bar (62.37 psi)
Maximum Braking Force = 0.6kN (134.89 lbf)

Weight of caliper and thruster – 1.36kg (3.00 lb)
Weight of thruster only – 0.81kg (1.81 lb)
Volume displacement of thruster at full retraction = 20ml (0.68 fl oz)

MUS3 Spring Applied – Pneumatically Released

Measurements in millimeters, inches in parentheses.

Maximum Pressure = 7 bar (102 psi)
Minimum Pressure for full retraction = 1.75 bar (25.38 psi)
Maximum Braking Force = 0.76kN (170.85 lbf)

Weight of caliper and thruster – 2.3kg (4.85 lb)
Weight of thruster only – 1.45kg (3.20 lb)
Volume displacement of thruster at full retraction = 46ml (1.56 fl oz)

MUS4 Spring Applied – Pneumatically Released

Measurements in millimeters, inches in parentheses.

Maximum Pressure = 7 bar (102 psi)
Minimum Pressure for full retraction = 2.4 bar (34.09 psi)
Maximum Braking Force = 2.6kN (584.50 lbf)

Weight of caliper and thruster – 2.24kg (4.94 lb)
Weight of thruster only – 1.48kg (3.28 lb)
Volume displacement of thruster at full retraction = 46ml (1.56 fl oz)
MS Series

MS Disc Brake Caliper Range

The Twiflex MS series of disc brake calipers is suitable for use with a disc thickness of 12.7mm (0.5 in). Minimum disc diameter is 250mm (10 in).

Normally one or two calipers are used per disc, mounted horizontally (i.e. at the 3 o’clock or 9 o’clock position) to prevent rubbing of one brake pad due to self-weight of the thruster. A range of brake discs is available from Twiflex (see Disc and Hub Assemblies).

For pneumatic operation use dry, filtered and non-lubricated compressed air. Pneumatic brakes require a control valve, operated either manually or by pneumatic or electrical signal.

The ratings shown on the graphs are based on fully bedded in and conditioned brake pads with a nominal friction coefficient $\mu = 0.4$. Twiflex disc brakes must be used with Twiflex asbestos free brake pads.

Effective disc radius = actual radius (m) – 0.03m
(Effective disc radius = actual radius (ft) – 0.09 ft)

<table>
<thead>
<tr>
<th>Disc Diameter mm</th>
<th>Braking Torque Nm (lb-ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>135 (5.3)</td>
</tr>
<tr>
<td>300</td>
<td>140 (5.5)</td>
</tr>
<tr>
<td>350</td>
<td>145 (5.7)</td>
</tr>
<tr>
<td>400</td>
<td>150 (5.9)</td>
</tr>
<tr>
<td>460</td>
<td>155 (6.1)</td>
</tr>
<tr>
<td>515</td>
<td>160 (6.3)</td>
</tr>
<tr>
<td>610</td>
<td>165 (6.5)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disc Diameter mm</th>
<th>Air Pressure - bar (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>135 (5.3)</td>
</tr>
<tr>
<td>300</td>
<td>140 (5.5)</td>
</tr>
<tr>
<td>350</td>
<td>145 (5.7)</td>
</tr>
<tr>
<td>400</td>
<td>150 (5.9)</td>
</tr>
<tr>
<td>460</td>
<td>155 (6.1)</td>
</tr>
<tr>
<td>515</td>
<td>160 (6.3)</td>
</tr>
<tr>
<td>610</td>
<td>165 (6.5)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disc Diameter mm</th>
<th>Air Pressure - bar (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>135 (5.3)</td>
</tr>
<tr>
<td>300</td>
<td>140 (5.5)</td>
</tr>
<tr>
<td>350</td>
<td>145 (5.7)</td>
</tr>
<tr>
<td>400</td>
<td>150 (5.9)</td>
</tr>
<tr>
<td>460</td>
<td>155 (6.1)</td>
</tr>
<tr>
<td>515</td>
<td>160 (6.3)</td>
</tr>
<tr>
<td>610</td>
<td>165 (6.5)</td>
</tr>
</tbody>
</table>

Retraction pressures where shown are calculated and may vary depending on spring tolerance.

MSA Pneumatically Applied – Spring Released

Maximum Pressure 7 bar (102 psi)
Maximum Braking Force – 2.76kN @ 7 bar (620.47 lbf @ 102 psi)
Weight of caliper and thruster — 2.8kg (6.17 lb)
Weight of thruster only — 1.3kg (2.87 lb)
Volume displacement of thruster at full stroke = 300ml (10.14 fl oz)

MSD Pneumatically Applied – Spring Released

Maximum Pressure 7 bar (102 psi)
Maximum Braking Force – 1.44kN @ 7 bar (323.72 @ 102 psi)
Weight of caliper and thruster — 2.5kg (5.51 lb)
Weight of thruster only — 1.0kg (2.20 lb)
Volume displacement of thruster at full stroke = 150ml (5.07 fl oz)
Refer to the diagram for details on the MS Series calipers.
Retraction pressures where shown are calculated and may vary depending on spring tolerance.

MSK Spring Applied – Pneumatically Released, Self Adjusting

Maximum Braking Force 2/3rd rate: 1.74kN (391.17 lb)
Minimum Pressure for full retraction: 33 bar (479 psi)
Weight of caliper and thruster: 4.9kg (10.80 lb)

MSL Spring Applied – Hydraulically Released, Self Adjusting

Maximum Braking Force 2/3rd rate: 1.74kN (391.17 lb)
Minimum Pressure for full retraction: 33 bar (479 psi)
Weight of caliper and thruster: 4.9kg (10.80 lb)

Volume displacement of thruster at 4mm (0.16 in) retraction = 5ml (0.17 fl oz)
Weight of thruster only: 3.4kg (7.49 lb)

Volume displacement of thruster at full retraction = 950ml (32.12 fl oz)
Weight of thruster only: 3.4kg (7.49 lb)

Maximum Braking Force 1/3rd rate: 0.87kN (195.58 lb)
Minimum Pressure for full retraction: 17 bar (247 psi)
Weight of caliper and thruster: 4.9kg (10.80 lb)

Volume displacement of thruster at 4mm (0.16 in) retraction = 5ml (0.17 fl oz)
Weight of thruster only: 3.4kg (7.49 lb)

Maximum Braking Force full rate: 2.6kN (584.50 lbf)
Minimum Pressure for full retraction: 9 bar (133 psi)
Weight of caliper and thruster: 4.9kg (10.80 lb)
MR Disc Brake Caliper Range

The Twiflex MR series of disc brake calipers is suitable for use with discs of 12.7mm (0.50 in) or 25.4mm (1 in) thick. Minimum disc diameter is 250mm (9.84 in). Minimum disc diameter for the MR2 is 460mm (18 in).

Normally one or two calipers are used per disc, but the number may be increased depending on disc size. The brakes may be positioned at any angle around the periphery of the disc, but should ideally be mounted horizontally (i.e. at the 3 o’clock or 9 o’clock position). If the caliper mounting angle is greater than 10° from the horizontal, or on vertical shaft applications, it should be fitted with an equalising link.

A range of brake discs is available from Twiflex (see Disc and Hub Assemblies).

For pneumatic operation use dry, filtered and non-lubricated compressed air. Pneumatic brakes require a control valve, operated either manually or by pneumatic or electrical signal.

The ratings shown on the graphs are based on fully bedded in and conditioned brake pads with a nominal friction coefficient $\mu = 0.4$. Twiflex disc brakes must be used with Twiflex asbestos free brake pads.

Effective disc radius = actual radius (m) – 0.03m

(Effective disc radius = actual radius (ft) – 0.09 ft)

| MR13 | 13 (0.51) | 181 (7.13) |
| MR25 | 25 (1.00) | 194 (7.64) |

MR Disc Brake Caliper

![MR Disc Brake Caliper Diagram]

MR2 Disc Brake Caliper

![MR2 Disc Brake Caliper Diagram]

Retraction pressures where shown are calculated and may vary depending on spring tolerance.
Retraction pressures where shown are calculated and may vary depending on spring tolerance.

MR Series

MRA - Pneumatically Applied – Spring Released

![Diagram of MRA]

- Maximum Pressure: 7 bar (102 psi)
- Maximum Braking Force: 6.9kN @ 7 bar
- Weight of MR caliper and thruster: 6.84kg (15.08 lb)

MRB - Pneumatically Applied – Spring Released

![Diagram of MRB]

- Maximum Pressure: 7 bar (102 psi)
- Maximum Braking Force: 10.8kN @ 7 bar
- Weight of MR caliper and thruster: 8.56kg (18.87 lb)

MRD - Pneumatically Applied – Spring Released

![Diagram of MRD]

- Maximum Pressure: 7 bar (102 psi)
- Maximum Braking Force: 5.6kN @ 7 bar
- Weight of MR caliper and thruster: 6.95kg (15.87 lb)

MRE - Pneumatically Applied – Spring Released

![Diagram of MRE]

- Maximum Pressure: 7 bar (102 psi)
- Maximum Braking Force: 0.74kN @ 7 bar
- Weight of MR caliper and thruster: 6.84kg (15.08 lb)

Weight of MR2 caliper and thruster: 8.32kg (18.34 lb)

Weight of thruster only: 1.33kg (2.91 lb)

Volume displacement of thruster at full stroke = 370ml (12.9 fl oz)

Weight of MR2 caliper and thruster: 9.00kg (19.73 lb)

Weight of thruster only: 2.09kg (4.64 lb)

Volume displacement of thruster at full stroke = 426ml (14.40 fl oz)

Weight of MR2 caliper and thruster: 8.15kg (17.79 lb)

Weight of thruster only: 1.16kg (2.59 lb)

Volume displacement of thruster at full stroke = 350ml (11.76 fl oz)

Weight of MR2 caliper and thruster: 7.34kg (16.18 lb)

Weight of thruster only: 0.34kg (0.75 lb)

Volume displacement of thruster at full stroke = 250ml (8.69 fl oz)
MRG Pneumatically Applied – Spring Released

P-1648-TF 3/18

Maximum Pressure 7 bar (102 psi)
Maximum Braking Force = 1.9kN @ 7 bar
(427.14 lbf @ 102 psi)
Volume displacement of thruster at full stroke =
84ml (2.16 fl oz)

Retraction pressures where shown are calculated and may vary depending on spring tolerance.

MRH Mechanically Applied – Lever Operated

Weight of MR caliper and thruster - 7.3kg (16.09 lb)
Weight of thruster only - 0.3kg (0.66 lb)
Weight of MR2 caliper and thruster at 14.99 lb

MRW Mechanically Applied – Hand Operated

Maximum Braking Force = 2.68kN (602.48 lbf)
Weight of hand wheel assembly only - 1.3kg (2.86 lb)
Weight of MR2 caliper and hand wheel - 8.3kg (18.29 lb)

Weight of lever assembly only - 1.4kg (3.08 lb)
Maximum Braking Force = 8.3kN @ 0.9kN
1865.91 @ 202.33 lbf force on lever

Weight of MR2 caliper and hand wheel assembly - 7.3kg (16.09 lb)
Weight of MR2 caliper and hand wheel - 8.3kg (18.29 lb)

Weight of MR2 caliper and thruster - 7.3kg (16.09 lb)
Weight of thruster only - 0.3kg (0.66 lb)
Volume displacement of thruster at full stroke =
84ml (2.16 fl oz)
MRK Spring Applied – Pneumatically Released, Self Adjusting

Minimum Pressure for full retraction: 3.3 bar (48 psi)
Maximum Braking Force 1/3 rate: 4.3kN (956.67 lb)
Weight of MR caliper and thruster - 10.5kg (23.14 lb)
Weight of MR2 caliper and thruster - 10.5kg (23.14 lb)

Minimum Pressure for full retraction: 1.7 bar (25 psi)
Maximum Braking Force 1/3 rate: 2.3kN (524.57 lb)
Weight of MR caliper and thruster - 10.5kg (23.14 lb)
Weight of MR2 caliper and thruster - 10.5kg (23.14 lb)

Minimum Pressure for full retraction: 0.5 bar (7.28 psi)
Maximum Braking Force 1/3 rate: 1.2kN (268.2 lb)
Weight of MR caliper and thruster - 11kg (24.25 lb)
Weight of MR2 caliper and thruster - 11kg (24.25 lb)

Weight of thruster only - 3.5kg (7.71 lb)
Volume displacement of thruster at full retraction is 950ml (32.12 fl oz)

MRL Spring Applied – Hydraulically Released, Self Adjusting

Minimum Pressure for full retraction: 33 bar (492 psi)
Maximum Braking Force 1/3 rate: 2.9kN (656.67 lb)
Weight of MR caliper and thruster - 10kg (22.04 lb)
Weight of MR2 caliper and thruster - 10kg (22.04 lb)

Minimum Pressure for full retraction: 17 bar (247 psi)
Maximum Braking Force 1/3 rate: 2.6kN (580 lb)
Weight of MR caliper and thruster - 10.5kg (23.14 lb)
Weight of MR2 caliper and thruster - 10.5kg (23.14 lb)

Weight of thruster only - 4kg (8.81 lb)
Volume displacement of thruster at 4mm (0.16 in) retraction = 5ml (0.16 fl oz)

Retraction pressures where shown are calculated and may vary depending on spring tolerance.
MX Series

MX Disc Brake Caliper Range

The Twiflex MX13, MX25, MX30 and MX40 series of disc brake calipers are suitable for use with discs of 12.7mm (0.50 in), 25.4mm (1 in), 30mm (1.18 in) and 40mm (1.37 in) thick respectively. The SMX caliper is only suitable for use with discs 12.7mm (0.50 in) thick. Minimum disc diameter is 300mm (11.81 in).

The MX/SMX calipers may be used with any of the Twiflex series of thrusters and feature a patented link mechanism to ensure uniform pad wear.

Normally one or two calipers are used per disc, but the number may be increased depending on disc size. The brakes may be positioned at any angle around the periphery of the disc, but should ideally be mounted horizontally (i.e. at the 3 o’clock or 9 o’clock position). If the caliper mounting angle is greater than 10° from the horizontal, or on vertical shaft applications, it should be fitted with an inclined mounting kit or equalising link. A range of brake discs is available from Twiflex (see Disc and Hub Assemblies).

For pneumatic operation use dry, filtered and non-lubricated compressed air. Pneumatic brakes require a control valve, operated either manually or by pneumatic or electrical signal.

The ratings shown on the graphs are based on fully bedded in and conditioned brake pads with a nominal friction coefficient $\mu = 0.4$. Twiflex disc brakes must be used with Twiflex asbestos free brake pads.

Effective disc radius = actual radius (m) – 0.033m
(Effective disc radius = actual radius (ft) – 0.011 ft)

<table>
<thead>
<tr>
<th>Disc Thickness</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>MX13</td>
<td>13 (0.50)</td>
<td>130 (5.12)</td>
</tr>
<tr>
<td>MX25</td>
<td>25 (1.00)</td>
<td>134 (5.28)</td>
</tr>
<tr>
<td>MX30</td>
<td>30 (1.18)</td>
<td>142 (5.59)</td>
</tr>
<tr>
<td>MX40</td>
<td>40 (1.57)</td>
<td>150 (5.91)</td>
</tr>
</tbody>
</table>

Retraction pressures where shown are calculated and may vary depending on spring tolerance.
Retraction pressures where shown are calculated and may vary depending on spring tolerance.

MXA Pneumatically Applied – Spring Released

MXB Pneumatically Applied – Spring Released

MXD Pneumatically Applied – Spring Released

MXE Pneumatically Applied – Spring Released

Weight of caliper and thruster - 8.15kg (17.96 lb)

Maximum Pressure 7 bar (102 psi)

Maximum Braking Force = 11kN @ 7 bar (2472.89 @ 102 psi)

Weight of thruster only - 2.06kg (4.54 lb)

Volume displacement of thruster at full stroke = 150ml (5.07 fl oz)

Weight of caliper and thruster - 8.75kg (19.97 lb)

Maximum Pressure 7 bar (102 psi)

Maximum Braking Force = 8.64kN @ 7 bar (1551.18 lb @ 102 psi)

Weight of caliper and thruster - 8.20kg (18.39 lb)

Weight of thruster only - 1.32kg (2.91 lb)

Volume displacement of thruster at full stroke = 450ml (14.10 fl oz)

Weight of caliper and thruster - 9.06kg (19.97 lb)

Maximum Pressure 7 bar (102 psi)

Maximum Braking Force = 11kN @ 7 bar (2472.89 @ 102 psi)

Weight of thruster only - 2.06kg (4.54 lb)

Volume displacement of thruster at full stroke = 150ml (5.07 fl oz)

Weight of caliper and thruster - 8.75kg (19.97 lb)

Maximum Pressure 7 bar (102 psi)

Maximum Braking Force = 8.64kN @ 7 bar (1551.18 lb @ 102 psi)

Weight of caliper and thruster - 8.20kg (18.39 lb)

Weight of thruster only - 1.32kg (2.91 lb)

Volume displacement of thruster at full stroke = 450ml (14.10 fl oz)

Weight of caliper and thruster - 8.32kg (18.39 lb)

Maximum Pressure 7 bar (102 psi)

Maximum Braking Force = 11kN @ 7 bar (2472.89 @ 102 psi)

Weight of thruster only - 2.06kg (4.54 lb)

Volume displacement of thruster at full stroke = 150ml (5.07 fl oz)

Weight of caliper and thruster - 8.75kg (19.97 lb)

Maximum Pressure 7 bar (102 psi)

Maximum Braking Force = 8.64kN @ 7 bar (1551.18 lb @ 102 psi)

Weight of caliper and thruster - 8.20kg (18.39 lb)

Weight of thruster only - 1.32kg (2.91 lb)

Volume displacement of thruster at full stroke = 450ml (14.10 fl oz)

Weight of caliper and thruster - 8.32kg (18.39 lb)

Maximum Pressure 7 bar (102 psi)

Maximum Braking Force = 11kN @ 7 bar (2472.89 @ 102 psi)

Weight of thruster only - 2.06kg (4.54 lb)

Volume displacement of thruster at full stroke = 150ml (5.07 fl oz)

Weight of caliper and thruster - 8.75kg (19.97 lb)

Maximum Pressure 7 bar (102 psi)

Maximum Braking Force = 8.64kN @ 7 bar (1551.18 lb @ 102 psi)

Weight of caliper and thruster - 8.20kg (18.39 lb)

Weight of thruster only - 1.32kg (2.91 lb)

Volume displacement of thruster at full stroke = 450ml (14.10 fl oz)

Weight of caliper and thruster - 8.32kg (18.39 lb)
Retraction pressures where shown are calculated and may vary depending on spring tolerance.

MXG Pneumatically Applied – Spring Released

- Volume displacement of thruster at full stroke = 300ml (10.14 fl oz)
- Weight of thruster only - 1.32kg (2.91 lb)

MXH Mechanically Applied – Lever Operated

- Weight of hand wheel assembly only - 1.3kg (2.86 lb)
- Weight of caliper and hand wheel assembly - 8.3kg (18.29 lb)

MXW Mechanically Applied – Hand Operated

- Weight of lever assembly only - 1.4kg (3.08 lb)
- Weight of caliper and lever assembly - 8.4kg

Maximum Braking Force = 1.9kN @ 7 bar

- Maximum Pressure 7 bar (102 psi)
- Weight of thruster only - 0.3kg (0.68 lb)
- Volume displacement of thruster at full stroke = 64ml (2.16 fl oz)
The EA actuator is a spring applied, electrically released unit designed for use with the Twiflex MX range of disc brake calipers. A 175W pancake motor drives a ball screw mechanism, retracting the brake.

A feature of the unit is a patented self-adjusting mechanism which maintains a constant air gap (and consequently braking force) between pad and disc as the pads wear.

The assembly is contained in a rugged, cast aluminium housing, designed for service in the harshest environments, which mounts directly to one arm of the MX caliper.

The MXEA is supplied complete with a solid state controller, suitable for all AC supply voltages, which converts the supply to the required DC output for the pancake motor. A 24VDC unit is also available. The brake is released when power to the controller is switched on, and applied when power is disconnected. Controlled application of the brake occurs, electrically damped by using the motor back E.M.F. and a damping resistor.

The controller is housed in a strong, steel, wall mounted enclosure (215mm x 215mm x 150mm deep) (8.46 in x 8.46 in x 5.90 in deep), protected to IP44 as standard (higher rating on request).

Braking force adjustable to 50% of maximum.

Retraction pressures where shown are calculated and may vary depending on spring tolerance.
MXS Spring Applied – Pneumatically Released, Self Adjusting

Retraction pressures where shown are calculated and may vary depending on spring tolerance.

MXSH Spring Applied – Hydraulically Released, Self Adjusting
MX Series

MXK Spring Applied – Pneumatically Released, Self Adjusting

Minimum Pressure for full retraction: 5.0 bar (73 psi)
Maximum Braking Force full rate: 6.4kN (1438.77 lbf)
Weight of caliper and thruster - 10.5kg (23.14 lb)
Volume displacement of thruster at full retraction = 950ml (32.12 fl oz)

Minimum Pressure for full retraction: 2.5 bar (36 psi)
Maximum Braking Force 1/2 rate: 3.2kN (719.38 lbf)
Weight of caliper and thruster - 10.5kg (23.14 lb)
Volume displacement of thruster at full retraction = 950ml (32.12 fl oz)

Minimum Pressure for full retraction: 3.3 bar (48 psi)
Maximum Braking Force 2/3 rate: 4.3kN (966.67 lbf)
Weight of caliper and thruster - 10.5kg (23.14 lb)
Volume displacement of thruster at full retraction = 950ml (32.12 fl oz)

Minimum Pressure for full retraction: 1.7 bar (25 psi)
Maximum Braking Force 1/3 rate: 2.2kN (497.57 lbf)
Weight of thruster only - 3.5kg (7.71 lb)
Volume displacement of thruster at full retraction = 950ml (32.12 fl oz)

Retraction pressures where shown are calculated and may vary depending on spring tolerance.
MX Series

MXL Spring Applied – Hydraulically Released, Self Adjusting

- Minimum Pressure for full retraction: 17 bar (247 psi)
- Maximum Braking Force 1/3 rate: 2.2kN (497.57 lbf)
- Weight of caliper and thruster - 11kg (24.25 lb)
- Volume displacement of thruster at 4mm (0.16 in) retraction = 5ml (0.16 fl oz)

Minimum Pressure for full retraction: 33 bar (479 psi)
Maximum Braking Force 2/3 rate: 4.3kN (966.67 lbf)
Weight of caliper and thruster - 11kg (24.25 lb)
Volume displacement of thruster at 4mm (0.16 in) retraction = 5ml (0.16 fl oz)

Retraction pressures where shown are calculated and may vary depending on spring tolerance.
GMX Series

GMX Disc Brake Caliper Range

The Twiflex GMX series of disc brake calipers is similar to the MX range but offers greater pad area. The GMX25, GMX30 and GMX40 are suitable for use with discs of 25.4mm (1 in), 30mm (1.18 in) and 40mm (1.57 in) thick respectively. The SGMX caliper is only suitable for use with discs 25.4mm (0.61 in) thick. Minimum disc diameter is 610mm (24 in).

The GMX/SGMX calipers may be used with any of the Twiflex series of thrusters and feature a patented link mechanism to ensure uniform pad wear.

Normally one or two calipers are used per disc, but the number may be increased depending on disc size. The brakes may be positioned at any angle around the periphery of the disc, but should ideally be mounted horizontally (i.e. at the 3 o’clock or 9 o’clock position). If the caliper mounting angle is greater than 10° from the horizontal, or on vertical shaft applications, it should be fitted with an inclined mounting kit or equalising link. A range of brake discs is available from Twiflex (see Disc and Hub Assemblies).

For pneumatic operation use dry, filtered and non-lubricated compressed air. Pneumatic brakes require a control valve, operated either manually or by pneumatic or electrical signal.

The ratings shown on the graphs are based on fully bedded in and conditioned brake pads with a nominal friction coefficient $\mu = 0.4$. Twiflex disc brakes must be used with Twiflex asbestos free brake pads.

Effective disc radius = actual radius (m) – 0.06m

Effective disc radius = actual radius (ft) – (0.19 ft)

| GMX Disc Brake Caliper |

<table>
<thead>
<tr>
<th>Disc Thickness</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMX25</td>
<td>25</td>
</tr>
<tr>
<td>GMX30</td>
<td>30</td>
</tr>
<tr>
<td>GMX40</td>
<td>40</td>
</tr>
</tbody>
</table>

| SGMX Disc Brake Caliper |

<table>
<thead>
<tr>
<th>Disc Thickness</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGMX</td>
<td>25</td>
</tr>
</tbody>
</table>

Retraction pressures where shown are calculated and may vary depending on spring tolerance.
GMXA Pneumatically Applied – Spring Released

GMXB Pneumatically Applied – Spring Released

GMXD Pneumatically Applied – Spring Released

GMXE Pneumatically Applied – Spring Released

Retraction pressures where shown are calculated and may vary depending on spring tolerance.
GMX Series

GMXG Pneumatically Applied – Spring Released

GMXH Mechanically Applied – Lever Operated

GMXW Mechanically Applied – Hand Operated

Maximum Pressure 7 bar (102 psi)
Maximum Braking Force = 1.9kN @ 7 bar
Weight of caliper and thruster - 9.52kg (20.99 lb)
Volume displacement of thruster at full stroke = 64ml (2.16 fl oz)

Weight of caliper and lever assembly - 10.62kg (23.41 lb)
Weight of lever assembly only - 1.4kg (3.09 lb)
Maximum Braking Force = 8.3kN @ 0.9kN (1865.91 @ 202.33 lbf) force on lever

Weight of caliper and hand wheel assembly - 10.52kg (23.19 lb)
Weight of hand wheel assembly only - 1.3kg (2.87 lb)
Maximum Braking Force = 2.68kN (602.49 lbf)

Retraction pressures where shown are calculated and may vary depending on spring tolerance.
GMX Series

GMXEA Spring Applied - Electrically Released, Self Adjusting

The EA actuator is a spring applied, electrically released unit designed for use with the Twiflex GMX range of disc brake calipers. A 175W pancake motor drives a ball screw mechanism, retracting the brake.

A feature of the unit is a patented self-adjusting mechanism which maintains a constant air gap (and consequently braking force) between pad and disc as the pads wear.

The assembly is contained in a rugged, cast aluminum housing, designed for service in the harshest environments, which mounts directly to one arm of the GMX caliper.

The GMXEA is supplied complete with a solid state controller, suitable for all AC supply voltages, which converts the supply to the required DC output for the pancake motor. A 24VDC unit is also available. The brake is released when power to the controller is switched on, and applied when power is disconnected. Controlled application of the brake occurs, electrically damped by using the motor back E.M.F. and a damping resistor.

The controller is housed in a strong, steel, wall mounted enclosure (215mm x 215mm x 150mm deep) (8.46 in x 8.46 in x 5.90 in), protected to IP44 as standard (higher rating on request).

Braking force adjustable to 50% of maximum.

Retraction pressures where shown are calculated and may vary depending on spring tolerance.
GMX Series

GMXS
Spring Applied – Pneumatically Released, Self Adjusting

![Diagram of GMXS](image)

Minimum Pressure for full retraction: 5 bar (73 psi)
Weight of caliper and thruster: 14.12kg (31.13 lb)

Maximum Braking Force XS 7.5: 11.2kN (2517.86 lbf)

Minimum Pressure for full retraction: 6.5 bar (94 psi)
Weight of caliper and thruster: 14.32kg (31.57 lb)

Maximum Braking Force XS 9.6: 14.3kN (3214.77 lbf)

Minimum Pressure for full retraction: 8.2 bar (1189 psi)
Volume displacement of thruster at full retraction = 1.19ml (0.06 fl oz)

GMXSH
Spring Applied – Hydraulically Released, Self Adjusting

![Diagram of GMXSH](image)

Minimum Pressure for full retraction: 3 bar (44 psi)
Weight of caliper and thruster: 13.22kg (29.15 lb)

Maximum Braking Force XSH 7.5: 6.8kN (1528.70 lbf)

Minimum Pressure for full retraction: 5.1 bar (73 psi)
Volume displacement of thruster at full retraction = 1.19ml (0.06 fl oz)

Maximum Braking Force XSH 9.6: 14.3kN (3214.77 lbf)

Minimum Pressure for full retraction: 8.2 bar (1189 psi)
Volume displacement of thruster at full retraction = 1.19ml (0.06 fl oz)
The Twiflex GMR and GMR40 series of disc brake calipers are suitable for use with discs of 25.4mm (1 in), and 40mm (1.57 in) thick respectively. Minimum disc diameter is 610mm (24.02 in).

Normally one or two calipers are used per disc, but the number may be increased depending on disc size. The brakes may be positioned at any angle around the periphery of the disc, but should ideally be mounted horizontally (i.e. at the 3 o’clock or 9 o’clock position). If the caliper mounting angle is greater than 10° from the horizontal, or on vertical shaft applications, it should be fitted with an inclined mounting kit. A range of brake discs is available from Twiflex (see Disc and Hub Assemblies).

For pneumatic operation use dry, filtered and non-lubricated compressed air. Pneumatic brakes require a control valve, operated either manually or by pneumatic or electrical signal.

The ratings shown on the graphs are based on fully bedded in and conditioned brake pads with a nominal friction coefficient \(\mu = 0.4 \). Twiflex disc brakes must be used with Twiflex asbestos free brake pads.

Effective disc radius = actual radius (m) – 0.06m

<table>
<thead>
<tr>
<th>Diameter (in)</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMR25</td>
<td>25 (1.00)</td>
<td>212 (8.35)</td>
<td>24 (0.94)</td>
</tr>
<tr>
<td>GMR40</td>
<td>40 (1.57)</td>
<td>223 (8.78)</td>
<td>29 (1.14)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diameter (in)</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMRP</td>
<td>212 (8.35)</td>
<td>396 (12.05)</td>
</tr>
<tr>
<td>GMR40P</td>
<td>223 (8.78)</td>
<td>312 (12.38)</td>
</tr>
</tbody>
</table>

Retraction pressures where shown are calculated and may vary depending on spring tolerance.
Retraction pressures where shown are calculated and may vary depending on spring tolerance.

GMR Series

GMRS Spring Applied – Pneumatically Released

Maximum Braking Force S 12.9: 30kN (6744.27 lbf)
Minimum Pressure for full retraction: 7 bar (102 psi)
Weight of caliper and thruster: 48kg (105.82 lb)
Volume displacement of thruster at full retraction = 1.31ml (0.04 fl oz)

GMRSD Spring Applied – Pneumatically Released

Maximum Braking Force S 15.6: 36kN (8093.12 lbf)
Minimum Pressure for full retraction: 8.4 bar (122 psi)
Weight of caliper and thruster: 49kg (108.03 lb)
Volume displacement of thruster at full retraction = 1.31ml (0.04 fl oz)

Retraction pressures where shown are calculated and may vary depending on spring tolerance.
Retraction pressures where shown are calculated and may vary depending on spring tolerance.
Modular Series

T2 Pneumatically or Hydraulically Applied

The Twiflex T2 disc brake caliper is split caliper design suitable for use with a minimum disc thickness of 5mm (0.20 in). The modules are mounted on each side of a central mounting plate of the same thickness as the brake disc. Minimum disc diameter is 120mm (4.72 in). Alternatively, the brake may be side-mounted with a spacer equal to the disc thickness between the two halves.

For pneumatic operation, use dry and filtered compressed air. Pneumatic brakes require a control valve, operated either manually or by pneumatic or electrical signal. Normally one or two calipers are used per disc, but the number may be increased depending on disc size. The brakes may be positioned at any angle around the periphery of the disc, but should ideally be mounted horizontally (i.e. at the 3 o’clock or 9 o’clock position). A range of brake discs is available from Twiflex (see Disc and Hub Assemblies).

The ratings shown on the graph are based on fully bedded in and conditioned brake pads with a nominal friction coefficient \(\mu = 0.4 \). Twiflex disc brakes must be used with Twiflex asbestos free brake pads.

Effective disc radius = actual radius (m) – 0.019m
(Effective disc radius = actual radius (ft) – 0.06 ft)

T20 Hydraulically Applied

The standard Twiflex T20 disc brake caliper is split caliper design suitable for use with a minimum disc thickness of 12.7mm (0.50 in). Optionally, the caliper may be supplied in a modified form for use with a minimum disc thickness of 8mm (0.31 in). Normally the brake is side mounted, however, for use with a disc thickness greater than 20mm (0.79 in), the split design allows the modules to be mounted each side of a central mounting plate of the same thickness as the brake disc. Minimum disc diameter is 300mm (11.81 in).

Normally one or two calipers are used per disc, but the number may be increased depending on disc size. The brakes may be positioned at any angle around the periphery of the disc, but should ideally be mounted horizontally (i.e. at the 3 o’clock or 9 o’clock position). A range of brake discs is available from Twiflex (see Disc and Hub Assemblies).

The ratings shown on the graph are based on fully bedded in and conditioned brake pads with a nominal friction coefficient \(\mu = 0.4 \). Twiflex disc brakes must be used with Twiflex asbestos free brake pads. Effective disc radius = actual radius (m) – 0.032m (0.10 ft).

Retraction pressures where shown are calculated and may vary depending on spring tolerance.
The Twiflex T40 disc brake caliper is split caliper design suitable for use with a minimum disc thickness of 20mm (0.79 in). The modules are mounted each side of a central mounting plate of the same thickness as the brake disc. Minimum disc diameter is 300mm (11.81 in).

Normally one or two calipers are used per disc, but the number may be increased depending on disc size. The brakes may be positioned at any angle around the periphery of the disc. A range of brake discs is available from Twiflex (see Disc and Hub Assemblies).

The ratings shown on the graph are based on fully bedded in and conditioned brake pads with a nominal friction coefficient $\mu = 0.4$. Twiflex disc brakes must be used with Twiflex asbestos free brake pads. Effective disc radius = actual radius (m) – 0.045m (0.15 ft).

Retraction pressures where shown are calculated and may vary depending on spring tolerance.
Modular Series

VCS Mk4 Spring Applied – Hydraulically Released

The Twiflex VCS Mk4 disc brake caliper is comprised of two halves, or spring modules, and is suitable for use with a minimum disc thickness of 20mm (0.79 in). The modules are mounted each side of a central mounting plate of the same thickness as the brake disc. Minimum disc diameter is 500mm (19.69 in).

Normally one or two calipers are used per disc, but the number may be increased depending on disc size. The brakes may be positioned at any angle around the periphery of the disc, but should ideally be mounted horizontally (i.e. at the 3 o’clock or 9 o’clock position). A range of brake discs is available from Twiflex (see Disc and Hub Assemblies).

<table>
<thead>
<tr>
<th>Caliper Type</th>
<th>Disc/Pad Air Gap (mm)</th>
<th>Braking Force (kN)</th>
<th>Minimum Pressure for Full Retraction bar (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCS70</td>
<td>1.7 (0.07)</td>
<td>62 (13938)</td>
<td>160 (2321)</td>
</tr>
<tr>
<td>VCS60</td>
<td>2.0 (0.08)</td>
<td>53 (11914)</td>
<td>148 (2147)</td>
</tr>
<tr>
<td>VCS50</td>
<td>2.0 (0.08)</td>
<td>44 (9892)</td>
<td>131 (1800)</td>
</tr>
<tr>
<td>VCS40</td>
<td>2.0 (0.08)</td>
<td>35 (7868)</td>
<td>113 (1639)</td>
</tr>
<tr>
<td>VCS30</td>
<td>2.0 (0.08)</td>
<td>25 (5620)</td>
<td>94 (1363)</td>
</tr>
</tbody>
</table>

Braking force ratings are achieved through a combination of shim number and air gap setting. Spring fatigue life is a function of the caliper rating.

The ratings shown in the table are based on fully bedded in and conditioned brake pads with a nominal friction coefficient \(\mu = 0.4 \). Twiflex disc brakes must be used with Twiflex asbestos free brake pads.

Effective disc radius = actual radius (m) – 0.064m (Effective disc radius = actual radius (ft) – 0.21 ft)

VCS-FL Spring Applied – Hydraulically Released

The Twiflex VCS-FL disc brake caliper comprises a single spring module forming the ‘active’ side of this floating unit and is available for use where space is limited or to accommodate axial disc float of ±6mm (0.24 in).

Braking force ratings are achieved through a combination of shim number and air gap setting. Spring fatigue life is a function of the caliper rating.

The ratings shown in the table are based on fully bedded in and conditioned brake pads with a nominal friction coefficient \(\mu = 0.4 \). Twiflex disc brakes must be used with Twiflex asbestos free brake pads.

Effective disc radius = actual radius (m) – 0.064m (Effective disc radius = actual radius (ft) – 0.21 ft)
The Twiflex VKSD disc brake caliper is comprised of two halves, or spring modules, and is suitable for use with a minimum disc thickness of 20mm (0.79 in). The modules are mounted each side of a central mounting plate 12mm (0.47 in) thicker than the brake disc. Minimum disc diameter is 1000mm (39.37 in).

Normally one or two calipers are used per disc, but the number may be increased depending on disc size. The brakes may be positioned at any angle around the periphery of the disc, but should ideally be mounted horizontally (i.e. at the 3 o’clock or 9 o’clock position). A range of brake discs is available from Twiflex (see Disc and Hub Assemblies).

Braking force ratings are achieved through a combination of different springs, shims and air gap settings. Spring fatigue life is a function of the caliper rating.

The ratings shown in the table are based on fully bedded in and conditioned brake pads with a nominal friction coefficient $\mu = 0.4$. Twiflex disc brakes must be used with Twiflex asbestos free brake pads.

$$\text{Effective disc radius} = \text{actual radius (m)} - 0.095\text{m}$$
$$\text{(Effective disc radius} = \text{actual radius (ft)} - 0.31\text{ ft})$$

<table>
<thead>
<tr>
<th>Caliper Type</th>
<th>Disc/Pad Air Gap (mm (in))</th>
<th>Braking Force (kN (lb))</th>
<th>Minimum Pressure for Full Retraction bar (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VKSD119</td>
<td>2 (0.08)</td>
<td>119 (26752)</td>
<td>138 (2002)</td>
</tr>
<tr>
<td>VKSD112</td>
<td>2 (0.08)</td>
<td>112 (25179)</td>
<td>131 (1900)</td>
</tr>
<tr>
<td>VKSD104</td>
<td>2 (0.08)</td>
<td>104 (23380)</td>
<td>124 (1798)</td>
</tr>
<tr>
<td>VKSD96</td>
<td>2 (0.08)</td>
<td>96 (21582)</td>
<td>116 (1682)</td>
</tr>
<tr>
<td>VKSD88</td>
<td>2 (0.08)</td>
<td>88 (19783)</td>
<td>108 (1566)</td>
</tr>
<tr>
<td>VKSD80</td>
<td>2 (0.08)</td>
<td>80 (17985)</td>
<td>100 (1450)</td>
</tr>
<tr>
<td>VKSD71</td>
<td>2 (0.08)</td>
<td>71 (15961)</td>
<td>92 (1334)</td>
</tr>
<tr>
<td>VKSD62</td>
<td>2 (0.08)</td>
<td>62 (13938)</td>
<td>83 (1204)</td>
</tr>
<tr>
<td>VKSD58</td>
<td>2 (0.08)</td>
<td>58 (13039)</td>
<td>63 (914)</td>
</tr>
<tr>
<td>VKSD53</td>
<td>2 (0.08)</td>
<td>53 (11915)</td>
<td>58 (814)</td>
</tr>
<tr>
<td>VKSD47</td>
<td>2 (0.08)</td>
<td>47 (10566)</td>
<td>53 (769)</td>
</tr>
<tr>
<td>VKSD41</td>
<td>2 (0.08)</td>
<td>41 (9217)</td>
<td>47 (682)</td>
</tr>
<tr>
<td>VKSD34</td>
<td>2 (0.08)</td>
<td>34 (7644)</td>
<td>41 (595)</td>
</tr>
<tr>
<td>VKSD28</td>
<td>2 (0.08)</td>
<td>28 (6295)</td>
<td>34 (493)</td>
</tr>
</tbody>
</table>

Weight of caliper (2 modules) - 146kg (321.87 lb)
Volume displacement per 1mm (0.04 in) stroke at both pads = 28ml (0.95 fl oz)

The Twiflex VKSD-FL disc brake caliper comprises a single spring module forming the ‘active’ side of this floating unit and is available for use where space is limited or to accommodate axial disc float of ±6mm (0.24 in).

Braking force ratings are achieved through a combination of different springs, shims and air gap settings. Spring fatigue life is a function of the caliper rating.

The ratings shown in the table are based on fully bedded in and conditioned brake pads with a nominal friction coefficient $\mu = 0.4$. Twiflex disc brakes must be used with Twiflex asbestos free brake pads.

$$\text{Effective disc radius} = \text{actual radius (m)} - 0.095\text{m}$$
$$\text{(Effective disc radius} = \text{actual radius (ft)} - 0.31\text{ ft})$$

Retraction pressures where shown are calculated and may vary depending on spring tolerance.
Modular Series

VKHD
Hydraulically Applied – Spring Released

The Twiflex VKHD disc brake caliper is comprised of two halves, or hydraulic modules, and is suitable for use with a minimum disc thickness of 20mm (0.79 in). The modules are mounted each side of a central mounting plate 12mm (0.47 in) thicker than the brake disc. Minimum disc diameter is 1000mm (39.37 in).

Normally one or two calipers are used per disc, but the number may be increased depending on disc size. The brakes may be positioned at any angle around the periphery of the disc, but should ideally be mounted horizontally (i.e. at the 3 o’clock or 9 o’clock position). A range of brake discs is available from Twiflex (see Disc and Hub Assemblies).

The ratings shown on the graph are based on fully bedded in and conditioned brake pads with a nominal friction coefficient $\mu = 0.4$. Twiflex disc brakes must be used with Twiflex asbestos free brake pads.

Effective disc radius = actual radius (m) – 0.095m
(Effective disc radius = actual radius (ft) – 0.31 ft)

VSMk2
SpringApplied – Hydraulically Released

The Twiflex VS Mk2 disc brake caliper is comprised of two modules secured between U-shaped top and bottom mounting plates by tie rods.

Typically one or two calipers are used per disc, but the number may be increased depending on disc size. The brakes may be positioned at any angle around the periphery, but ideally mounted horizontally (at the 3 o’clock or 9 o’clock positions).

Minimum disc diameter is 1000mm (39.37 in) with no maximum except for practical limitations. The standard caliper can accommodate disc thicknesses from 38mm (1.49 in) to 50mm (1.97 in) - consult Twiflex for discs thicker than 50mm (1.97 in).

A tandem caliper arrangement is available sharing a common, central, mounting plate; minimum disc diameter is 2000mm (78.74 in).

The ratings shown on the tables are based on fully bedded in and conditioned brake pads with a nominal friction coefficient $\mu = 0.4$. Twiflex disc brakes must be used with Twiflex asbestos free brake pads.

Effective disc radius = actual radius (m) – 0.110m
(Effective disc radius = actual radius (ft) – 0.36 ft)

Note: Spring fatigue life is a function of the caliper rating.

Retraction pressures where shown are calculated and may vary depending on spring tolerance.
VH Hydraulically Applied – Spring Released

The Twiflex VH disc brake caliper is comprised of two modules secured between U-shaped top and bottom mounting plates by tie rods.

Typically one or two calipers are used per disc, but the number may be increased depending on disc size. The brakes may be positioned at any angle around the periphery, but ideally mounted horizontally (at the 3 o’clock or 9 o’clock positions).

Minimum disc diameter is 1000mm (78.74 in) with no maximum except for practical limitations. The standard caliper can accommodate disc thicknesses from 38mm (1.49 in) to 50mm (1.97 in) - consult Twiflex for discs thicker than 50mm (1.97 in).

A tandem caliper arrangement is available sharing a common, central, mounting plate; minimum disc diameter is 2000mm (78.74 in)

The ratings shown on the graph are based on fully bedded in and conditioned brake pads with a nominal friction coefficient $\mu = 0.4$. Twiflex disc brakes must be used with Twiflex asbestos free brake pads.

Effective disc radius = actual radius (m) – 0.110m
(Effective disc radius = actual radius (ft) – 0.36 ft)

VMH2 Hydraulically Applied – Spring Released

The Twiflex VMH2 disc brake caliper is comprised of two modules bolted to a central mounting plate, 12mm (0.47 in) thicker than the brake disc. Minimum disc thickness is 38mm (1.49 in) and minimum disc diameter is 1500mm (59.06 in) with no maximum except for practical limitations.

Typically one or two calipers are used per disc, positioned at any angle around the periphery, but the number may be increased depending on disc size.

The ratings shown on the graph are based on fully bedded in and conditioned brake pads with a nominal friction coefficient $\mu = 0.4$. Twiflex disc brakes must be used with Twiflex asbestos free brake pads.

Effective disc radius = actual radius (m) – 0.155m
(Effective disc radius = actual radius (ft) – 0.38 ft)

Retraction pressures where shown are calculated and may vary depending on spring tolerance.
Modular Series

VMS3SPS Spring Applied – Hydraulically Released

The Twiflex VMS3-SPS disc brake caliper is comprised of two modules bolted to a central mounting plate, 12mm (0.47 in) thicker than the brake disc. Minimum disc thickness is 38mm (1.49 in) and minimum disc diameter is 1500mm (59.06 in) with no maximum except for practical limitations. Based on a development of the earlier Twiflex VMS2-SP disc brake, the VMS3-SPS provides a significant increase in braking force but in a similarly sized package.

Infinite fatigue life (>2 x 10^6 cycles) is achievable for most units at the 3mm (0.12 in) air gap shown in the table and possible, by reducing this setting, for the higher rated brakes – contact Twiflex for further information.

The braking force is a function of both the air-gap setting and the thickness of the shim pack (if used) but may be also controlled using hydraulic back pressure during braking.

The ratings shown on the tables are based on fully bedded in and conditioned brake pads with a nominal friction coefficient $\mu = 0.4$. Twiflex disc brakes must be used with Twiflex asbestos free brake pads.

Effective disc radius = actual radius (m) – 0.155m
(Effective disc radius = actual radius (ft) – 0.51 ft)

VMS2 Spring Applied – Hydraulically Released

The Twiflex VMS2 disc brake caliper is comprised of two modules bolted to a central mounting plate, 12mm (0.47 in) thicker than the brake disc. Minimum disc thickness is 38mm (1.49 in) and minimum disc diameter is 1500mm (59.06 in) with no maximum except for practical limitations. Typically one or two calipers are used per disc, positioned at any angle around the periphery, but the number may be increased depending on disc size.

The braking force is a function of both the air-gap setting and the thickness of the shim pack used (see table) but may be also controlled using hydraulic back pressure during braking.

The ratings shown on the tables are based on fully bedded in and conditioned brake pads with a nominal friction coefficient $\mu = 0.4$. Twiflex disc brakes must be used with Twiflex asbestos free brake pads.

Effective disc radius = actual radius (m) – 0.155m
(Effective disc radius = actual radius (ft) – 0.51 ft)
Similar to the Twiflex VMS2 disc brake, the VMS-DP comprises 2 spring modules; this time mounted in a common housing to form the ‘active’ side of a floating brake caliper. This arrangement allows the assembly to accommodate ±10mm (0.39 in) of axial disc movement.

Minimum disc diameter is 4500mm (177.17 in) with no maximum except for practical limitations. Disc thickness for the standard caliper range from 117mm (4.60 in) to 130mm (5.11 in) with the mounting bracket being machined accordingly.

The braking force is a function of both the air-gap setting and the thickness of the shim pack used (see table) but may be also controlled using hydraulic back pressure during braking.

The VMS-DP is primarily intended to function as a holding brake, but may be used for a dynamic duty where spring life is not a consideration (for example, occasional emergency stopping).

The ratings shown in the table are based on fully bedded in and conditioned brake pads with a nominal friction coefficient \(\mu = 0.4 \). Twiflex disc brakes must be used with Twiflex asbestos free brake pads.

Effective disc radius = actual radius (m) – 0.155m
(Effective disc radius = actual radius (ft) – 0.51 ft)

<table>
<thead>
<tr>
<th>Shim Pack</th>
<th>Braking Force</th>
<th>Minimum Pressure for Full Retraction Bar (psi)</th>
<th>Spring Life</th>
<th>Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>590 (132637)</td>
<td>169 (2451)</td>
<td>>100000</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>639 (143653)</td>
<td>181 (2625)</td>
<td>>100000</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>688 (154669)</td>
<td>192 (2785)</td>
<td>>20000</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>737 (165684)</td>
<td>204 (2959)</td>
<td>>20000</td>
<td></td>
</tr>
</tbody>
</table>

Weight of caliper = 1887Kg (4160 lb)
Volume displacement per 2mm (0.08 in) stroke = 174ml (5.88 fl oz)

Retraction pressures where shown are calculated and may vary depending on spring tolerance.
Twiflex brake discs may be supplied bored and drilled to customer requirements. Non-standard disc sizes, not shown in the tables, can be supplied to order. Brake discs are manufactured from spheroidal graphite iron.

12.7mm (0.5 in) thick brake discs

<table>
<thead>
<tr>
<th>Nominal Diameter</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D Min.</th>
<th>Inertia kgm² (psf)</th>
<th>Weight kg (lb)</th>
<th>Safe Disc (psi)</th>
<th>Max. Safe Disc Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>250</td>
<td>128</td>
<td>36</td>
<td>30</td>
<td>0.04 (0.01)</td>
<td>4.0 (8.82)</td>
<td>6500</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>305</td>
<td>166</td>
<td>51</td>
<td>51</td>
<td>0.09 (0.02)</td>
<td>7.3 (16.09)</td>
<td>6000</td>
<td></td>
</tr>
<tr>
<td>350</td>
<td>356</td>
<td>210</td>
<td>76</td>
<td>76</td>
<td>0.17 (0.03)</td>
<td>10.9 (24.03)</td>
<td>5100</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>406</td>
<td>260</td>
<td>102</td>
<td>102</td>
<td>0.28 (0.06)</td>
<td>14.1 (31.09)</td>
<td>4400</td>
<td></td>
</tr>
<tr>
<td>460</td>
<td>457</td>
<td>311</td>
<td>102</td>
<td>102</td>
<td>0.48 (0.10)</td>
<td>19.1 (42.11)</td>
<td>3900</td>
<td></td>
</tr>
<tr>
<td>515</td>
<td>514</td>
<td>368</td>
<td>102</td>
<td>102</td>
<td>0.75 (0.15)</td>
<td>22.7 (50.04)</td>
<td>3500</td>
<td></td>
</tr>
<tr>
<td>565</td>
<td>610</td>
<td>464</td>
<td>102</td>
<td>102</td>
<td>1.57 (0.32)</td>
<td>33.0 (72.75)</td>
<td>2900</td>
<td></td>
</tr>
<tr>
<td>610</td>
<td>711</td>
<td>565</td>
<td>102</td>
<td>102</td>
<td>3.20 (0.66)</td>
<td>52.3 (115.30)</td>
<td>2500</td>
<td></td>
</tr>
<tr>
<td>660</td>
<td>813</td>
<td>660</td>
<td>102</td>
<td>102</td>
<td>6.57 (1.39)</td>
<td>85.5 (188.50)</td>
<td>2200</td>
<td></td>
</tr>
<tr>
<td>715</td>
<td>914</td>
<td>762</td>
<td>102</td>
<td>102</td>
<td>10.80 (2.21)</td>
<td>110.9 (244.49)</td>
<td>1900</td>
<td></td>
</tr>
</tbody>
</table>

All dimensions in mm (in)

* Bores cast and machined to order

25.4mm (1 in) thick brake discs

<table>
<thead>
<tr>
<th>Nominal Diameter</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D Min.</th>
<th>Inertia kgm² (psf)</th>
<th>Weight kg (lb)</th>
<th>Safe Disc (psi)</th>
<th>Max. Safe Disc Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>610</td>
<td>610</td>
<td>343</td>
<td>76</td>
<td>125</td>
<td>2.75 (0.56)</td>
<td>66 (145.51)</td>
<td>2900</td>
<td></td>
</tr>
<tr>
<td>760</td>
<td>762</td>
<td>495</td>
<td>76</td>
<td>125</td>
<td>7.0 (1.43)</td>
<td>104 (229.28)</td>
<td>2300</td>
<td></td>
</tr>
<tr>
<td>915</td>
<td>914</td>
<td>648</td>
<td>76</td>
<td>230</td>
<td>16.0 (3.28)</td>
<td>150 (330.69)</td>
<td>1900</td>
<td></td>
</tr>
<tr>
<td>1065</td>
<td>1067</td>
<td>800</td>
<td>76</td>
<td>230</td>
<td>29.1 (6.96)</td>
<td>220 (485.69)</td>
<td>1600</td>
<td></td>
</tr>
<tr>
<td>1220</td>
<td>1219</td>
<td>914</td>
<td>76</td>
<td>230</td>
<td>49.1 (10.06)</td>
<td>273 (601.86)</td>
<td>1400</td>
<td></td>
</tr>
<tr>
<td>1370</td>
<td>1372</td>
<td>1067</td>
<td>76</td>
<td></td>
<td>80.1 (16.61)</td>
<td>346 (762.80)</td>
<td>1200</td>
<td></td>
</tr>
<tr>
<td>1525</td>
<td>1524</td>
<td>1219</td>
<td>76</td>
<td></td>
<td>120.5 (24.68)</td>
<td>393 (866.42)</td>
<td>1100</td>
<td></td>
</tr>
<tr>
<td>1830</td>
<td>1829</td>
<td>1524</td>
<td>76</td>
<td></td>
<td>243.5 (49.87)</td>
<td>522 (1150.81)</td>
<td>1000</td>
<td></td>
</tr>
</tbody>
</table>

All dimensions in mm (in)

* Bores cast and machined to order

Range of Hubs used with Twiflex Brake Discs

<table>
<thead>
<tr>
<th>Hub Size</th>
<th>A</th>
<th>B*</th>
<th>C</th>
<th>Disc Size</th>
<th>Max. Brake Torque kNm (ft lb)</th>
<th>WR² (kgm² (psf))</th>
</tr>
</thead>
<tbody>
<tr>
<td>112</td>
<td>99</td>
<td>14-42</td>
<td>58</td>
<td>250</td>
<td>1.1 (811)</td>
<td>0.000097 (0.0002)</td>
</tr>
<tr>
<td>168</td>
<td>148</td>
<td>28-65</td>
<td>87</td>
<td>300</td>
<td>3.6 (2665)</td>
<td>0.0088 (0.0018)</td>
</tr>
<tr>
<td>240</td>
<td>200</td>
<td>40-100</td>
<td>117</td>
<td>400</td>
<td>9.5 (7007)</td>
<td>0.044 (0.009)</td>
</tr>
<tr>
<td>330</td>
<td>272</td>
<td>60-140</td>
<td>155</td>
<td>400</td>
<td>24.0 (17701)</td>
<td>0.23 (0.05)</td>
</tr>
<tr>
<td>370</td>
<td>308</td>
<td>90-150</td>
<td>176</td>
<td>515</td>
<td>30.0 (22127)</td>
<td>0.35 (0.07)</td>
</tr>
</tbody>
</table>

* Hubs can be supplied with parallel or taper bores, and keywayed to order, at extra cost.

Hubs are manufactured from steel 080M40.
Monitoring Units

Twiflex offers a wide range of monitoring options for both caliper and modular brake types. This includes a number of IP67-rated inductive and analogue proximity sensors for brake status or pad condition.

In addition, electro-mechanical and limit switches are available as single or multi-function units and may be supplied fully sealed, with positive action safety switches.

Monitoring units are used to indicate:
• Brake on or off, or the fully retracted condition reached
• Adjustment for pad wear required
• Pad replacement needed
• Any combination of the above

Materials, Traceability & Finishes

Twiflex Ltd. is approved to BS EN ISO 9001:2000, by Lloyds Registry of Quality Assurance. The scope of Twiflex Ltd Quality System embraces all procedures and controls from quotation to delivery of industrial disc brakes.

Materials
All materials are obtained from Twiflex approved suppliers. Twiflex discs and brake housings, unless otherwise stated, are made from Spheroidal Graphite Iron and actuator housings from cast aluminium.

Traceability
We can offer, at customer’s request, component traceability through Lloyds. In special circumstances we can also offer traceability through the American Bureau of Shipping (ABS), Det. Norske Veritas (DNV), and other recognized authorities.

Finishes
Twiflex can offer a range of finishing processes, depending upon the degree of protection required. Disc brake assemblies requiring full environmental protection are built using stainless steel, hard chrome plating and marine paint.
Hydraulic Power Units

Twiflex has consolidated decades of development to produce a range of electro-hydraulic power units to meet most application requirements. Each power unit has been designed for reliability, high performance and low maintenance, and is supplied with a comprehensive easy-to-read installation, operation and maintenance manual. The Twiflex datasheets contain user guides giving a step-by-step selection process. Contact Twiflex application engineers to discuss your requirements in detail.

LC Electro Hydraulic Power Units

The “LC” range of stand alone power units is designed to operate the Twiflex range MR, MX, GMX, GMR and VCS spring applied hydraulically released brakes, providing a basic brake on/off control. There are various options available including “soft braking”, a range of operating and motor voltages, and various add-on accessories including a terminal box.

The “soft braking” option is available as an additional manifold slice to facilitate a fast approach, soft braking system. This enables rapid closing of the pad/disc air gap followed by controlled application of braking force up to full torque. Refer to data sheet DS3001.

MP Electro Hydraulic Power Units

The modular “MP” range of electro-hydraulic power packs has been designed to provide a completely flexible means of brake control in the most arduous operating environments.

The units are composed of one of three base modules, dictated by the size and number of calipers to be controlled, comprising motor, pump and reservoir. The hydraulic circuit is then selected, based on the operation and control logic required by the application and may range from a simple ‘on/off’ function to full closed loop PLC control. Finally, auxiliary options are specified (for example, hand pump for manual caliper release; heater for low ambient temperatures; stainless steel components for marine environments, etc.).

The “MP” solution is especially useful when the application requires independent control of multiple brake circuits. Refer to data sheet DS3002 or contact Twiflex for more details.
Braking Calculations

There are many factors to take into account when determining what type of brake to use on any particular machine. For example, what is the function of the brakes? Are there any external loads? Are there any time delays?

The primary consideration should be to answer the question: “What do you want the brake to do?”

The application will often fall into one of three main types:

- **Holding Brakes**
 In such static applications a suitable factor should always be used to compensate for the possibility of foreign matter contaminating the disc surface, loss of conditioning of the brake pad surface, and to provide an appropriate safety margin, depending on pad material, statutory or other requirements.

- **Dynamic and Emergency Brakes**
 In a dynamic application the brake must stop all of the moving parts of the machine. Often this function is asked for in conjunction with the holding requirements as an emergency braking function. Basic calculations should, in these cases, include an assessment of operating temperature, power dissipation (to ensure that the pads are maintained in good condition), and expected pad life.

- **Tension (Continuous Duty) Brakes**
 This application arises when the brake is called upon to provide a continuous torque or tension on material passing through the machine, for example on tension reels. Special considerations are required to ensure adequate pad life.

Braking calculations are fundamental to good brake selection. The following calculations are intended only as a guide for those wishing to make their own selection. For a more detailed analysis of a proposed braking system, Twiflex Application Engineers can assist in providing details of all expected operating characteristics using specialist software.

Definition of Braking Terms

Clamping Force (F_n) is the force pressing each brake pad against the disc.

Braking Force (F_b) is the tangential friction force acting between the brake pads and disc.

$$F_b = 2 \cdot \mu \cdot F_n$$

Where: μ is the coefficient of friction between the pad and the disc (a nominal value of 0.4 is assumed for fully conditioned pads of standard material).

Braking Torque (T_b) is the moment of braking force about the center of rotation.

$$T_b = F_b \cdot r_e$$

Where r_e is the effective disc radius.

Calculated braking torques for the range of Twiflex brake calipers are shown in the brochure for a range of standard disc sizes.
Braking Calculations

Definition of Symbols and Units

It is important, when making calculations, that a consistent set of units is used.

Symbols and units

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω_m</td>
<td>Maximum disc speed</td>
<td>[rad/sec]</td>
</tr>
<tr>
<td>ω</td>
<td>Deceleration during braking</td>
<td>[rad/sec2]</td>
</tr>
<tr>
<td>J</td>
<td>Total inertia referred to braked shaft</td>
<td>[kgm2]</td>
</tr>
<tr>
<td>m</td>
<td>External load</td>
<td>[kg]</td>
</tr>
<tr>
<td>T_B</td>
<td>Total braking torque</td>
<td>[Nm]</td>
</tr>
<tr>
<td>T_L</td>
<td>Load torque (out-of-balance torque)</td>
<td>[Nm]</td>
</tr>
<tr>
<td>T_J</td>
<td>Inertia Torque</td>
<td>[Nm]</td>
</tr>
<tr>
<td>T_F</td>
<td>Friction torque</td>
<td>[Nm]</td>
</tr>
<tr>
<td>t_b</td>
<td>Braking time</td>
<td>[sec]</td>
</tr>
<tr>
<td>t_d</td>
<td>Delay time for brake signal</td>
<td>[sec]</td>
</tr>
<tr>
<td>t_s</td>
<td>Overall stopping time</td>
<td>[sec]</td>
</tr>
<tr>
<td>g</td>
<td>Acceleration due to gravity</td>
<td>[m/sec2]</td>
</tr>
</tbody>
</table>

Basis of Brake Calculation

The fundamentals of braking calculations are to ensure that:

- There is sufficient torque to stop and hold the machine at rest
- For dynamic stops, the power dissipation is acceptable for the area of the brake pads being used
- The operating temperature of the brake disc is controlled, to avoid brake fade and reduced performance

The basic data needed to make an initial calculation are any out-of-balance forces acting on the machine, and the total inertia of the moving parts of the machine.

The total braking torque is defined as follows:

$$T_B = T_J + T_L - T_F$$

 Generally the effects of friction can be ignored for a conservative estimate of the required braking torque. It is important, in all cases of dynamic braking, that the inertia of all of the moving parts is referred to the braked shaft when calculating T_J (see below).

Brake Calculation

Basic braking calculations are derived from simple mechanics. Both the effects of out of balance loads and the torque needed to stop the inertia in the desired way need to be calculated.

Load torque T_L

Where the machine has any out-of-balance load applied the effective out-of-balance torque must be calculated. In the case of a suspended load, for example this is simply given by

$$T_L = m \cdot g \cdot r \text{ [Nm]}$$

where r is the radius at which the load acts (based on drum diameter, reel diameter etc.) The brake will need to overcome this load before it can start to slow down the machine; (it is assumed that the out of balance opposes the action of the brake). If the load is at rest, the static brake torque will prevent the load from moving. In practice a safety factor should be used in the case where the brake is called upon only to hold this load and is only infrequently used in a dynamic manner. In these cases a service factor of 2 is recommended to allow for external environmental conditions, i.e. the brake should be rated to give twice this calculated value.
With some types of machines, such as downhill conveyors or escalators, a component of the load acts in the direction of motion. In these cases the following equation should be used:

\[T_L = m \cdot g \cdot r \cdot \sin \phi \text{ [Nm]} \]

Where \(\phi \) is the angle of the motion to the horizontal. In cases where the load does not produce a direct torque on the braked shaft (e.g., there is a gearbox between the loaded shaft and the brake) the load torque should be calculated accordingly.

In cases of dynamic braking, where the load torque is not constant, for example on wind turbines where the aerodynamic load varies with the speed of the machine, then the equation for \(T_L \) becomes complex and it is recommended that selection should be referred to Twiflex.

Inertia torque \(T_J \) (dynamic braking only)

Having overcome the external forces additional braking torque is required to stop all the moving parts of the machine. This additional torque is calculated as follows:

\[T_J = J \cdot \omega \text{ [Nm]} \]

In this equation the deceleration required can readily be calculated from the braking time.

\[\omega = \omega / t_b \]

In some special cases more precise calculation of speed and time may be required.

The moment of inertia of the system (\(J \)) should represent all moving parts. For example, in a hoist calculation allowance should be made to include the motor, brake disc, gearbox, winding drum, ropes, load etc. again with a suitable allowance for any mechanical advantage at various parts of the system.

The effective inertia of the load is given simply as:

\[J = m \cdot r^2 \text{ [kgm}^2\text{]} \]

For the winding drum the following well established formula can be used for an initial estimate (can also be used for flat discs):

\[J = \pi \cdot \rho \cdot l \cdot (D^4 - d^4) / 32 \text{ [kgm}^2\text{]} \]

Where \(l \) is the length of the drum,
\(D \) is the outside diameter
\(d \) is the inside diameter and \(\rho \) is the density of the material (7840 kg/m\(^3\) for steel)

The inertia of the motor should also be included in the calculations. These values can be estimated but should ideally be obtained directly from the manufacturer.

Note: All inertia must be referred to the brake shaft.

For example, if the brake is positioned on the low speed shaft of a machine (gearbox output shaft) then all calculated inertia values (motor, couplings, etc.) must be referred to this shaft.

When referring inertia \(J_B \) from one shaft with speed \(\omega_B \) to another shaft with speed \(\omega_A \) use:

\[J_A = J_B \left(\omega_B / \omega_A \right)^2 \]

Special requirements

In certain cases there are other direct considerations to be applied when making braking calculations.

In mine hoists the service factor for holding is defined, as are allowable levels of deceleration, especially when manriding. For escalators, allowable stopping distances or even rates of deceleration may be defined in local standards.

Twiflex is able to offer assistance with calculations in such special cases.
Braking Calculations

Other Considerations

To optimise braking performance there are other considerations which must be taken into account.

Rubbing speed

For high-speed applications a further consideration is the linear speed at which the disc is passing between the pads when the brake operates. This is important and is usually measured at the effective radius.

Thus the rubbing speed is given as:

\[\text{Rubbing speed} = \omega_m \cdot r_e \ (\text{m/s}) \]

In general a maximum speed of 30m/s is recommended for standard brake pad materials. Above this value it is likely that the effective coefficient of friction will be reduced leading to a reduction in braking performance. For certain applications where the rubbing speed is particularly high (up to 100m/s) special pads manufactured from sintered materials are available. Refer to Twiflex for details.

Operating temperatures

During a dynamic application of a brake the energy of the machine will be converted to heat, generated between the pad and the disc. It is the temperature of the disc surface that is normally used to assess the brake performance. Failure to take account of the peak temperature can lead to a reduced braking performance due to the onset of brake fade. With standard brake pads a peak temperature of 250°C has been found to be acceptable, although in certain cases higher temperatures might be permitted. In the case where sintered pads are used peak temperatures in excess of 600°C are possible. The operating temperature also determines pad wear. The higher the temperature, the greater the wear rate of the pads. These calculations require a detailed analysis, carried out by the application engineers at Twiflex, using dedicated software.

Power dissipation

In order to provide a consistent controlled performance of a brake it is also important to check the power dissipated during a stop. This affects the condition of the brake pads.

To calculate the power dissipation it is necessary to calculate the total energy absorbed during the stop, estimated as follows:

\[\text{Kinetic energy (KE)} = J \cdot \omega_m^2 / 2 \] (Joules)

In the case of external loads further allowance should also be made for the change in potential energy of the system. For example in the case of a hoist this is determined by how far the load drops during the braking cycle. The mean power dissipated is therefore given by:

\[\text{Mean power dissipation} = \text{KE} / t_b \] (Watts)

This is usually converted to what is termed the Mean Specific Power Dissipation (kW/cm²) for evaluation of pad performance, i.e. the mean power dissipation is divided by the pad area.

A value of 0.7kW/cm² has been shown to be acceptable for emergency stops of around 10 seconds duration, providing that the pads have been well bedded in and conditioned. Higher values can be used for shorter stopping times.

For tensioning duties the value of the mean specific power dissipation is more typically around 0.06 kW/cm². Failure to observe this basic selection criteria may result in poor braking performance and limited pad life.

Twiflex application engineers will be only too happy to assist in the selection process to meet your application requirements.

Conversion Factors

<table>
<thead>
<tr>
<th>To Convert...</th>
<th>Into...</th>
<th>Multiply By...</th>
</tr>
</thead>
<tbody>
<tr>
<td>kN</td>
<td>lbf</td>
<td>224.808943</td>
</tr>
<tr>
<td>Nm</td>
<td>lb-ft</td>
<td>0.737562149277</td>
</tr>
<tr>
<td>m</td>
<td>ft</td>
<td>3.2808399</td>
</tr>
<tr>
<td>mm</td>
<td>in</td>
<td>0.0393701</td>
</tr>
<tr>
<td>kg</td>
<td>lb</td>
<td>2.20462</td>
</tr>
<tr>
<td>bar</td>
<td>psi</td>
<td>14.5037738</td>
</tr>
<tr>
<td>ml</td>
<td>fl oz</td>
<td>0.033814</td>
</tr>
<tr>
<td>kgm²</td>
<td>psf</td>
<td>0.20428571428571</td>
</tr>
<tr>
<td>Joules</td>
<td>btu</td>
<td>0.000948</td>
</tr>
<tr>
<td>Watts</td>
<td>hp</td>
<td>0.001341</td>
</tr>
</tbody>
</table>
Application Data Form

Mail or Fax to:
Twiflex
Technical Sales Department
9 Briar Road, Twickenham,
Middlesex. TW2 6RB England

FAX: +44 (0) 20 8755 5601
Phone: +44 (0) 20 8894 1161

Date ________________________________

Company ___

Address __

City ______________________ Country ________ Postcode ______________

Name ___

Title __________________________ Phone (____) ____________________________

Email ___________________________ FAX (____) ____________________________

☐ Urgent ☐ For Review ☐ Please Comment ☐ Please Reply ☐ Please Recycle

Application Description

Type of braking required: (eg: Holding, Dynamic Stopping, Emergency Stopping, Tensioning):
__

Service Brake: (Between motor and gearbox):___________________________________

Motor Rating: __

Safety Braking Required? ___

Brake Torque: __

Comments
__
__
__
__
__
__
__

Drawing of Application
Twiflex Facilities

Europe
9 Briar Road, Twickenham
Middlesex TW2 6RB - England
+44 (0) 20 8994 1161
info@twiflex.com
sales@twiflex.com
Caliper Brakes and Thrusters

Ampthill Road
Bedford, MK42 9RD - UK
+44 (0) 1234 350311
Caliper Brakes and Thrusters

Hatschekstraße 36
69126 Heidelberg - Germany
+49 (0) 6221-30470
Caliper Brakes and Thrusters

North America
2800 Fisher Road
Wichita Falls, TX 76302 - USA
940-723-3483
Toll free: 844-723-3483
twiflex.info@twiflex.com
Caliper Brakes and Thrusters

Twiflex Facilities

The Brands of Altra Industrial Motion

Couplings
Ameridrives
www.ameridrives.com
Bibby Turboflex
www.bibbyturboflex.com
Guardian Couplings
www.guardiancouplings.com
Huco
www.huco.com
Lamiflex Couplings
www.lamiflexcouplings.com
Stromag
www.stromag.com
TB Wood’s
www.tbwoods.com

Geared Cam Limit Switches
Stromag
www.stromag.com

Electric Clutches & Brakes
Inertia Dynamics
www.idicb.com
Matrix
www.matrix-international.com
Stromag
www.stromag.com
Warner Electric
www.warnerelectric.com

Linear Products
Warner Linear
www.warnerlinear.com

Engineered Bearing Assemblies
Kilian
www.kilianbearings.com

Heavy Duty Clutches & Brakes
Industrial Clutch
www.indclutch.com
Twiflex
www.twiflex.com
Stromag
www.stromag.com
Svendborg Brakes
www.svendborg-brakes.com
Wichita Clutch
www.wichitacleutch.com

Belted Drives
TB Wood’s
www.tbwoods.com

Gearing
Bauer Gear Motor
www.bauergears.com
Boston Gear
www.bostongear.com
Delroyd Worm Gear
www.delroyd.com
Nuttall Gear
www.nuttallgear.com

Overrunning Clutches
Formsprag Clutch
www.formsprag.com
Marland Clutch
www.marland.com
Stieber
www.stieberclutch.com

Neither the accuracy nor completeness of the information contained in this publication is guaranteed by the company and may be subject to change in its sole discretion. The operating and performance characteristics of these products may vary depending on the application, installation, operating conditions and environmental factors. The company’s terms and conditions of sale can be viewed at http://www.altramotion.com/terms-and-conditions/sales-terms-and-conditions. These terms and conditions apply to any person who may buy, acquire or use a product referred to herein, including any person who buys from a licensed distributor of these branded products.

©2018 by Twiflex LLC. All rights reserved. All trademarks in this publication are the sole and exclusive property of Twiflex LLC or one of its affiliated companies.

www.twiflex.com